OMNIA SCIENTIA

OMNIA SCIENTIA

OMNIA SCIENTIA

OMNIA SCIENTIA

OMNIA SCIENTIA

PHYSICS & CHEMISTRY

PHYSICS & CHEMISTRY

PHYSICS & CHEMISTRY

PHYSICS & CHEMISTRY

PHYSICS & CHEMISTRY

MATERIAL COEFFICIENTS

MATERIAL COEFFICIENTS

MATERIAL COEFFICIENTS

MATERIAL COEFFICIENTS

MATERIAL COEFFICIENTS

TCR @ 20 °C (68 °F, 293 K) with ρ and σ
TCR @ 20 °C (68 °F, 293 K) with ρ and σ
TCR @ 20 °C (68 °F, 293 K) with ρ and σ
TCR @ 20 °C (68 °F, 293 K) with ρ and σ
TCR @ 20 °C (68 °F, 293 K) with ρ and σ
Temperature Coefficient of Resistance
TEMPERATURE COEFFICIENT OF RESISTANCE (TCR): The “alpha” (α) constant, illustrates the change in internal resistance per degree of temperature of materials. At the universal reference temperature of 20° C, established alpha tables provide temperature coefficients of resistance to calculate the change in resistance and temperature of material elements, metals and alloys.
Pure metals maintain a positive coefficient number, as resistance increases with temperature. Carbon, Silicon, and Germanium, have a negative coefficient number, with resistance that decreases with increasing temperature. Specific metal alloys have a near zero temperature coefficient of resistance, as resistance barely changes with temperature, excellent for creating precision resistors.



Temperature Coefficient of Resistance
TEMPERATURE COEFFICIENT OF RESISTANCE (TCR): The “alpha” (α) constant, illustrates the change in internal resistance per degree of temperature of materials. At the universal reference temperature of 20° C, established alpha tables provide temperature coefficients of resistance to calculate the change in resistance and temperature of material elements, metals and alloys.
Pure metals maintain a positive coefficient number, as resistance increases with temperature. Carbon, Silicon, and Germanium, have a negative coefficient number, with resistance that decreases with increasing temperature. Specific metal alloys have a near zero temperature coefficient of resistance, as resistance barely changes with temperature, excellent for creating precision resistors.



Temperature Coefficient of Resistance
TEMPERATURE COEFFICIENT OF RESISTANCE (TCR): The “alpha” (α) constant, illustrates the change in internal resistance per degree of temperature of materials. At the universal reference temperature of 20° C, established alpha tables provide temperature coefficients of resistance to calculate the change in resistance and temperature of material elements, metals and alloys.
Pure metals maintain a positive coefficient number, as resistance increases with temperature. Carbon, Silicon, and Germanium, have a negative coefficient number, with resistance that decreases with increasing temperature. Specific metal alloys have a near zero temperature coefficient of resistance, as resistance barely changes with temperature, excellent for creating precision resistors.



Temperature Coefficient of Resistance
TEMPERATURE COEFFICIENT OF RESISTANCE (TCR): The “alpha” (α) constant, illustrates the change in internal resistance per degree of temperature of materials. At the universal reference temperature of 20° C, established alpha tables provide temperature coefficients of resistance to calculate the change in resistance and temperature of material elements, metals and alloys.
Pure metals maintain a positive coefficient number, as resistance increases with temperature. Carbon, Silicon, and Germanium, have a negative coefficient number, with resistance that decreases with increasing temperature. Specific metal alloys have a near zero temperature coefficient of resistance, as resistance barely changes with temperature, excellent for creating precision resistors.



Temperature Coefficient of Resistance
TEMPERATURE COEFFICIENT OF RESISTANCE (TCR): The “alpha” (α) constant, illustrates the change in internal resistance per degree of temperature of materials. At the universal reference temperature of 20° C, established alpha tables provide temperature coefficients of resistance to calculate the change in resistance and temperature of material elements, metals and alloys.
Pure metals maintain a positive coefficient number, as resistance increases with temperature. Carbon, Silicon, and Germanium, have a negative coefficient number, with resistance that decreases with increasing temperature. Specific metal alloys have a near zero temperature coefficient of resistance, as resistance barely changes with temperature, excellent for creating precision resistors.



FORMULAS for TCR & Conductance
TCR = (R1-R2) / R2 ÷ (T1-T2) x 10^6


Δ R / R 0 = α Δ T



FORMULAS for TCR & Conductance
TCR = (R1-R2) / R2 ÷ (T1-T2) x 10^6


Δ R / R 0 = α Δ T



FORMULAS for TCR & Conductance
TCR = (R1-R2) / R2 ÷ (T1-T2) x 10^6


Δ R / R 0 = α Δ T



FORMULAS for TCR & Conductance
TCR = (R1-R2) / R2 ÷ (T1-T2) x 10^6


Δ R / R 0 = α Δ T



FORMULAS for TCR & Conductance
TCR = (R1-R2) / R2 ÷ (T1-T2) x 10^6


Δ R / R 0 = α Δ T



MATERIAL ρ (Ω·m) σ (S/m) TC
Aluminium 2.82 E−8 3.50 E7 0.0039
Calcium 3.36 E−8 2.98 E7 0.004’1
Carbon (amorphous) Min 5.00 E−4 1.25 E3 -0.000’5
Carbon (amorphous) Max 8.00 E−4 2.00 E3 -0.000’5
Carbon (graphene) 1.00 E−8 1.00 E8 -0.000’2
Constantan 4.90 E−7 2.04 E6 0.000’008
Copper 1.68 E−8 5.96 E7 0.003’862
Copper (annealed) 1.72 E−8 5.80 E7 0.003’93
Germanium 4.60 E−1 2.17 -0.048
Gold 2.44 E−8 4.10 E7 0.003’4
Iron 1.00 E−7 1.00 E7 0.005
Lead 2.20 E-7 4.55 E6 0.0039
Lithium 9.28 E−8 1.08 E7 0.006
Manganin 4.82 E−7 2.07 E6 0.000’002
Mercury 9.80 E−7 1.02 E6 0.000’9
Nichrome 1.10 E−6 6.70 E5 0.000’4
Nickel 6.99 E−8 1.43 E7 0.006
Platinum 1.06 E−7 9.43 E6 0.003’92
Silicon 6.40 E2 1.56 E−3 -0.075
Silver 1.59 E−8 6.30 E7 0.003’8
Tin 1.09 E−7 9.17 E6 0.004’5
Titanium 4.20 E−7 2.38 E6 0.003’8
Tungsten 5.60 E−8 1.79 E7 0.004’5
Zinc 5.90 E−8 1.69 E7 0.003’7


ρ (Ω·m) at 20 °C, σ (S/m) at 20 °C & TC (Temperature Coefficient)


Coefficients of various materials at 20 °C (68 °F, 293 K)



MATERIAL ρ (Ω·m) σ (S/m) TC
Aluminium 2.82 E−8 3.50 E7 0.0039
Calcium 3.36 E−8 2.98 E7 0.004’1
Carbon (amorphous) Min 5.00 E−4 1.25 E3 -0.000’5
Carbon (amorphous) Max 8.00 E−4 2.00 E3 -0.000’5
Carbon (graphene) 1.00 E−8 1.00 E8 -0.000’2
Constantan 4.90 E−7 2.04 E6 0.000’008
Copper 1.68 E−8 5.96 E7 0.003’862
Copper (annealed) 1.72 E−8 5.80 E7 0.003’93
Germanium 4.60 E−1 2.17 -0.048
Gold 2.44 E−8 4.10 E7 0.003’4
Iron 1.00 E−7 1.00 E7 0.005
Lead 2.20 E-7 4.55 E6 0.0039
Lithium 9.28 E−8 1.08 E7 0.006
Manganin 4.82 E−7 2.07 E6 0.000’002
Mercury 9.80 E−7 1.02 E6 0.000’9
Nichrome 1.10 E−6 6.70 E5 0.000’4
Nickel 6.99 E−8 1.43 E7 0.006
Platinum 1.06 E−7 9.43 E6 0.003’92
Silicon 6.40 E2 1.56 E−3 -0.075
Silver 1.59 E−8 6.30 E7 0.003’8
Tin 1.09 E−7 9.17 E6 0.004’5
Titanium 4.20 E−7 2.38 E6 0.003’8
Tungsten 5.60 E−8 1.79 E7 0.004’5
Zinc 5.90 E−8 1.69 E7 0.003’7


ρ (Ω·m) at 20 °C, σ (S/m) at 20 °C & TC (Temperature Coefficient)


Coefficients of various materials at 20 °C (68 °F, 293 K)



MATERIAL ρ (Ω·m) σ (S/m) TC
Aluminium 2.82 E−8 3.50 E7 0.0039
Calcium 3.36 E−8 2.98 E7 0.004’1
Carbon (amorphous) Min 5.00 E−4 1.25 E3 -0.000’5
Carbon (amorphous) Max 8.00 E−4 2.00 E3 -0.000’5
Carbon (graphene) 1.00 E−8 1.00 E8 -0.000’2
Constantan 4.90 E−7 2.04 E6 0.000’008
Copper 1.68 E−8 5.96 E7 0.003’862
Copper (annealed) 1.72 E−8 5.80 E7 0.003’93
Germanium 4.60 E−1 2.17 -0.048
Gold 2.44 E−8 4.10 E7 0.003’4
Iron 1.00 E−7 1.00 E7 0.005
Lead 2.20 E-7 4.55 E6 0.0039
Lithium 9.28 E−8 1.08 E7 0.006
Manganin 4.82 E−7 2.07 E6 0.000’002
Mercury 9.80 E−7 1.02 E6 0.000’9
Nichrome 1.10 E−6 6.70 E5 0.000’4
Nickel 6.99 E−8 1.43 E7 0.006
Platinum 1.06 E−7 9.43 E6 0.003’92
Silicon 6.40 E2 1.56 E−3 -0.075
Silver 1.59 E−8 6.30 E7 0.003’8
Tin 1.09 E−7 9.17 E6 0.004’5
Titanium 4.20 E−7 2.38 E6 0.003’8
Tungsten 5.60 E−8 1.79 E7 0.004’5
Zinc 5.90 E−8 1.69 E7 0.003’7


ρ (Ω·m) at 20 °C, σ (S/m) at 20 °C & TC (Temperature Coefficient)


Coefficients of various materials at 20 °C (68 °F, 293 K)



MATERIAL ρ (Ω·m) σ (S/m) TC
Aluminium 2.82 E−8 3.50 E7 0.0039
Calcium 3.36 E−8 2.98 E7 0.004’1
Carbon (amorphous) Min 5.00 E−4 1.25 E3 -0.000’5
Carbon (amorphous) Max 8.00 E−4 2.00 E3 -0.000’5
Carbon (graphene) 1.00 E−8 1.00 E8 -0.000’2
Constantan 4.90 E−7 2.04 E6 0.000’008
Copper 1.68 E−8 5.96 E7 0.003’862
Copper (annealed) 1.72 E−8 5.80 E7 0.003’93
Germanium 4.60 E−1 2.17 -0.048
Gold 2.44 E−8 4.10 E7 0.003’4
Iron 1.00 E−7 1.00 E7 0.005
Lead 2.20 E-7 4.55 E6 0.0039
Lithium 9.28 E−8 1.08 E7 0.006
Manganin 4.82 E−7 2.07 E6 0.000’002
Mercury 9.80 E−7 1.02 E6 0.000’9
Nichrome 1.10 E−6 6.70 E5 0.000’4
Nickel 6.99 E−8 1.43 E7 0.006
Platinum 1.06 E−7 9.43 E6 0.003’92
Silicon 6.40 E2 1.56 E−3 -0.075
Silver 1.59 E−8 6.30 E7 0.003’8
Tin 1.09 E−7 9.17 E6 0.004’5
Titanium 4.20 E−7 2.38 E6 0.003’8
Tungsten 5.60 E−8 1.79 E7 0.004’5
Zinc 5.90 E−8 1.69 E7 0.003’7


ρ (Ω·m) at 20 °C, σ (S/m) at 20 °C & TC (Temperature Coefficient)


Coefficients of various materials at 20 °C (68 °F, 293 K)



MATERIAL ρ (Ω·m) σ (S/m) TC
Aluminium 2.82 E−8 3.50 E7 0.0039
Calcium 3.36 E−8 2.98 E7 0.004’1
Carbon (amorphous) Min 5.00 E−4 1.25 E3 -0.000’5
Carbon (amorphous) Max 8.00 E−4 2.00 E3 -0.000’5
Carbon (graphene) 1.00 E−8 1.00 E8 -0.000’2
Constantan 4.90 E−7 2.04 E6 0.000’008
Copper 1.68 E−8 5.96 E7 0.003’862
Copper (annealed) 1.72 E−8 5.80 E7 0.003’93
Germanium 4.60 E−1 2.17 -0.048
Gold 2.44 E−8 4.10 E7 0.003’4
Iron 1.00 E−7 1.00 E7 0.005
Lead 2.20 E-7 4.55 E6 0.0039
Lithium 9.28 E−8 1.08 E7 0.006
Manganin 4.82 E−7 2.07 E6 0.000’002
Mercury 9.80 E−7 1.02 E6 0.000’9
Nichrome 1.10 E−6 6.70 E5 0.000’4
Nickel 6.99 E−8 1.43 E7 0.006
Platinum 1.06 E−7 9.43 E6 0.003’92
Silicon 6.40 E2 1.56 E−3 -0.075
Silver 1.59 E−8 6.30 E7 0.003’8
Tin 1.09 E−7 9.17 E6 0.004’5
Titanium 4.20 E−7 2.38 E6 0.003’8
Tungsten 5.60 E−8 1.79 E7 0.004’5
Zinc 5.90 E−8 1.69 E7 0.003’7


ρ (Ω·m) at 20 °C, σ (S/m) at 20 °C & TC (Temperature Coefficient)


Coefficients of various materials at 20 °C (68 °F, 293 K)



EDUCATIONAL RESOURCE
EDUCATIONAL RESOURCE
EDUCATIONAL RESOURCE
EDUCATIONAL RESOURCE
EDUCATIONAL RESOURCE
SCIENTIAM QUIA OMNES
SCIENTIAM QUIA OMNES
SCIENTIAM QUIA OMNES
SCIENTIAM QUIA OMNES
SCIENTIAM QUIA OMNES